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Motivation: Learning ROMs for complex systems

Challenges in complex applications

Uncertainties in model, parameters, or both

Details and access to governing equations, discretization,
and solver typically unavailable when working with legacy
codes ⇒ Intrusive MOR infeasible in those situations

Opportunities

Data is everywhere (cheaper memory, better sensors,
more observations); can be used to build ROMs and/or
reduce uncertainties
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Starting comments

Dynamical systems nature of problem should not be ignored in
model learning.

The more we know about the model, the more we can incorporate
into the learning framework: Model structure, nonlinear terms,
inputs, etc.
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Partial Differential Equation Model

Many complex problems are modeled with
PDEs of the form:

∂s

∂t
= A(s; q)+H(s; q)+f(t, s; q)+B(u; q)

Input u(t)

State s(x, t;µ) with
x ∈ Ω ⊆ Rd, d = 1, 2, 3

Parameters q

A is a linear operator

H is quadratic in s, the nonlinear
function is f(t, s) and B is a linear
input operator.

Full-order model (FOM)

Semi-discretized numerical model of the PDE:

ṡ(t,q) =A(q)s(t;q) + H(q)(s(t;q)⊗ s(t;q))

+ f(t, s;q) + B(q)u(t),

State s(t;q) ∈ Rn

Parameters q ∈ R`

Matrices A ∈ Rn×n, H ∈ Rn×n2

, B ∈ Rn×m

Reduced-order model (ROM)

˙̂s(t;q) = Â(q)ŝ(t;q) + Ĥ(q)(ŝ(t;q)⊗ ŝ(t;q))

+ V>f(t,Vŝ(q)) + B̂(q)u(t)

Reduced state ŝ(t;q) ∈ Rn

Parameters q ∈ R`

Matrices Â ∈ Rr×r, Ĥ ∈ Rr×r2 , B̂ ∈ Rr×m
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Intrusive vs. non-intrusive: Sometimes we don’t have a choice
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Part 1:

Operator Inference for non-intrusive model reduction of systems
with non-polynomial nonlinear terms

(hopefully completed soon)

with Peter Benner, Pawan Goyal, Benjamin Peherstorfer, Karen Willcox
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Part 1: Problem setting & Goal

1. Model is known in PDE form (quadratic + non-polynomial + input):

∂s

∂t
= A(s) +H(s) + f(t, s) + B(u)

2. Data available from FOM2:

s1, s2, . . . , sk, and u1,u2, . . . ,uk

3. The non-polynomial nonlinear term is such that:

f(t, s) = [f(t, s1), · · · , f(t, sn)]>

Goal

Leverage available information of nonlinear terms to learn a ROM:

˙̂s(t) = Âŝ(t) + Ĥ(ŝ(t)⊗′ ŝ(t)) + V>f(t,Vŝ) + B̂u(t)

2The FOM data comes from time-stepping ṡ(t) = As(t) +H(s(t)⊗′ s(t)) + f(t, s) +Bu(t)
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A short example

Consider the PDE

∂

∂t
s(x, t) =

∂2

∂x2
s(x, t) + e−βts(x, t)−α + b(x)u(t)

with time-dependent reaction term f(t, s) = e−βts(x, t)−α.
After spatial discretization with a finite difference scheme, the system reads as
(s−α := [si]

−α, i = 1, 2, . . . , n):

ṡ(t) = As(t) + e−βts(t)−α + Bu(t).

f(t, s(t)) = e−βts(t)−α does not require approximation of spatial derivatives

Evaluating the semi-discrete nonlinear function f(t, s) only requires application of f(t, si)
at every component of s = [s1, s2, . . . , sn].

Other examples: Arrhenius reaction model exp (γ − γ
s ); rational functions

s

α+ s
,

fractional powers sα etc.

8 / 46 Boris Krämer (University of California San Diego) Operator inference for non-polynomial systems and control



Intrusive projection-based ROMs

Given is the following FOM, and we would like to compute a ROM:

ṡ(t) = As(t) + H(s(t)⊗′ s(t)) + f(t, s) + Bu(t)

V = [v1, . . . ,vr] ∈ Rn×r orthonormal matrix, r � n, computed, e.g., with POD.

Let s̃ be the ROM state with si ≈ Vs̃i

Projection-based (intrusive) ROM

The projection-based ROM has the form

˙̃s(t) = Ãs̃(t) + H̃(s̃(t)⊗′ s̃(t)) + f̃(t, s̃) + B̃u(t)

where f̃(t, s̃) = V>f(t,Vs̃) and the reduced operators

Ã = V>AV ∈ Rr×r , H̃ = V>H(V ⊗′ V) ∈ Rr×r2 , B̃ = V>B ∈ Rr×m
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Non-intrusive Operator Inference: Preparing the data

To learn a ROM, we build on the operator inference work
from [Peherstorfer and Willcox, 2016]:

1. Start with state and input data:

S :=

 s0 s1 · · · sk

 , U :=

 u(t0) u(t1) · · · u(tk)

 .
2. Due to the specific form of the nonlinear terms, we can evaluate the nonlinear snapshot

matrix:

F =

 f(t0, s(t0)) f(t1, s(t1)) · · · f(tk, s(tk))

 .
3. Compute r dominant POD basis vectors of S, resulting in V s.t.

‖S−VV>S‖
‖S‖

≤ tol.

4. Project the state data and nolinear snapshot data

Ŝ = V>S, F̂ = V>F.
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Operator inference: Solving for the operators

Denote with ˙̂sk the time derivative approximation of d
dt ŝ(tk), which can be computed from ŝ

using a time derivative approximation. We store the time-derivative approximations in the
matrix

˙̂
S :=

 ˙̂s(t0) ˙̂s(t1) · · · ˙̂s(tk)

 .
Operator inference for non-polynomial nonlinear system

A non-intrusive ROM of the form

˙̂s(t) = Âŝ(t) + Ĥ(ŝ(t)⊗′ ŝ(t)) + V>f(t,Vŝ(t)) + B̂u(t),

can be obtained by solving the optimization problem from the above projected:

min
Â,B̂,Ĥ

‖ ˙̂
S− F̂︸ ︷︷ ︸

:=R̂

−ÂŜ− B̂U− Ĥ(Ŝ⊗′ Ŝ)‖F .
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Two assumptions needed for convergence analysis

Assumption 1

The time stepping scheme for the FOM is convergent, i.e.,

max
i∈{1,...T/∆t}

‖si − s(ti)‖2 → 0 as ∆t→ 0.

Assumption 2

The derivatives approximated from projected states, ˙̂sk, converge to d
dt ŝ(tk) as the

discretization time step ∆t→ 0, i.e.,

max
i∈{1,...T/∆t}

‖ ˙̂si −
d

dt
ŝ(ti)‖2 → 0 as ∆t→ 0.
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Convergence of the learned ROM to the intrusive ROM

Theorem [Benner/Goyal/K./Peherstorfer/Willcox, 2020]

Let Assumption 1 and Assumption 2 hold and let a POD basis matrix
V = [v1,v2, . . . ,vr] ∈ Rn×r be given. Let Ã, B̃, H̃ be the intrusively projected ROM

operators. Let the data matrix [Ŝ, U, Ŝ⊗′ Ŝ] have full column rank.

Then for every ε > 0, there exists r ≤ n and a time step size ∆t > 0 such that the learned
operators satisfy:

‖Â− Ã‖ ≤ ε, ‖B̂− B̃‖ ≤ ε, ‖Ĥ− H̃‖ ≤ ε.
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Hyper-reduction to speed up nonlinear function evaluation

To accelerate the evaluation of V>f(t,Vŝ) in the learned ROM, hyper-reduction can be used
(Barrault et al., 2004; Astrid et al., 2008; Nguyen et al., 2008, Chaturantabut & Sorensen,
2010; Carlberg et al., 2013; Drmac & Gugercin, 2016,...)

We employ the discrete empirical interpolation method (DEIM) to approximate

f̂(t,Vŝ) ≈ f̂r(t,Vŝ) = V>W(S>W)−1S>f(t,Vŝ).

W is computed by taking the SVD of the nonlinear snapshot matrix F and setting W to
the leading m left singular vectors of F.

S is an n×m matrix obtained by selecting certain columns of the n× n identity matrix,
following the DEIM algorithm.
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Results: Tubular reactor model

One-dimensional (x ∈ (0, 1)) model with a single reaction, describing the evolution of the
species concentration ψ(x, t) and temperature θ(x, t) via

∂ψ

∂t
=

1

Pe

∂2ψ

∂x2
− ∂ψ

∂x
−Df(ψ, θ; γ),

∂θ

∂t
=

1

Pe

∂2θ

∂x2
− ∂θ

∂x
− β(θ − θref) + BDf(ψ, θ; γ),

with Arrhenius reaction term

f(ψ, θ; γ) = ψ exp
(
γ − γ

θ

)
.

Boundary conditions

∂ψ

∂x
(0, t) = Pe(ψ(0, t)− 1),

∂θ

∂x
(0, t) = Pe(θ(0, t)− 1),

∂ψ

∂x
(1, t) = 0,

∂θ

∂x
(1, t) = 0.

The quantity of interest is the temperature oscillation at the reactor exit:

y(t) = θ(x = 1, t).
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Results: Tubular reactor model

FOM is semi-discrete model obtained via finite differences:

ṡ(t) = As(t) + f(s(t)) + B.

with discretized state s(t) ∈ R198.

Discretized Arrhenius term requires pointwise evaluations (local in space)

[f(ψ,θ; γ)]i = ψi exp

(
γ − γ

θi

)
.

Collect snapshots in T = (0, 30] with δt = 10−3 spacing.

16 / 46 Boris Krämer (University of California San Diego) Operator inference for non-polynomial systems and control



Learned ROM more accurate than intrusive ROM

ROM predictions for 100% longer than
training interval

r = 10 for both ROMs

Learned ROM (non-Markovian) more
accurate than projection-based ROM
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Batch Chromatography: A chemical process

Mixture of products A and B injected into column

Move with different velocities, thus separating at the column exit

Component A, which moves faster, is collected between t1 and t2, component B between
t3 and t4
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Batch Chromatography: A non-polynomial nonlinear model

The dynamics of the batch chromatographic column:

∂ci
∂t

+
1− ε
ε

∂qi
∂t

+ ν
∂ci
∂x
−Di

∂2ci
∂x2

= 0

∂qi
∂t

= κi

(
qEqi − qi

)
Adsorption equilibrium concentration

qEq
i =

Hi,1 ci
1 +

∑
j=1,2

Kj,1 cj
+

Hi,2 ci
1 +

∑
j=1,2

Kj,2 cj

ci, qi: Liquid & solid phase concentration

Hi,1, Hi,2: Henry constants

Kj,1,Kj,2 the thermodynamic coefficients

κi: mass-transfer coefficient of component i

ε: column porosity

Zero initial conditions
ci(t = 0, x) = qi(t = 0, x) = 0

Boundary conditions:

Di
∂ci
∂x

∣∣∣∣
x=0

= ν (ci|x=0 − c
in
i ),

∂ci
∂x

∣∣∣∣
x=L

= 0

with

cin
i (t) =

1

1 + e−5(t−tinj)
, tinj = 1.3
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Creating a block-structured model

We can simplify the previous PDE by inserting q̇i into the first equation, and obtain:

∂ci
∂t

= −ν ∂ci
∂x

+Di
∂2ci
∂x2

+ εcκi

(
qEqi − qi

)
∂qi
∂t

= κi

(
qEq
i − qi

)
A finite volume discretization of the governing equations yields a discretized model of the form:

ċ1

q̇1

ċ2

q̇2

 =


A1 0 0 0
0 0 0 0
0 0 A2 0
0 0 0 0



c1

q1

c2

q2

+


B
0
B
0

u(t) +

[
εc
1

]
⊗
[
f1(c1,q1, c2,q2)
f2(c1,q1, c2,q2)

]
,

where c1,q1, c2,q2 ∈ Rn, A1,A2 ∈ Rn×n, B ∈ Rn. The nonlinear term is spatially local

fi(c1,q1, c2,q2) = κi

(
qEq
i − qi

)
20 / 46 Boris Krämer (University of California San Diego) Operator inference for non-polynomial systems and control



Maintaining the coupling structure in projection-based ROMs

In a projection-based framework, we would approximate
c1

q1

c2

q2

 ≈

Vc1

Vq1

Vc2

Vq2



ĉ1

q̂1

ĉ2

q̂2


so that the ROM preserves the coupling structure:

˙̂c1

˙̂q1

˙̂c2

˙̂q2

 =


Â1 0 0 0
0 0 0 0

0 0 Â2 0
0 0 0 0



ĉ1

q̂1

ĉ2

q̂2

+


B̂1

0

B̂2

0

u(t) +

[
εc
1

]
⊗
[
f̂1(ĉ1, q̂1, ĉ2, q̂2)

f̂2(ĉ1, q̂1, ĉ2, q̂2)

]
,

where ĉ1, q̂1, ĉ2, q̂2 ∈ Rr, Â1, Â2 ∈ Rr×r, B̂1, B̂2 ∈ Rr.
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Using our model knowledge:
Maintaining the coupling structure in learned ROMs

For Operator Inference, we assemble the following data (with T = (0, 10]s and δt = 10−5) :

Ŝ =


V>c1

C1

V>q1
Q1

V>c2
C2

V>q2
Q2

 =:


Ĉ1

Q̂1

Ĉ2

Q̂2

 , ˙̂
S =


V>c1

Ċ1

V>q1
Q̇1

V>c2
Ċ2

V>q2
Q̇2

 =:


˙̂
C1

˙̂
Q1

˙̂
C2

˙̂
Q2

 .
Block structure preservation in learned ROM

We can maintain the coupling structure by solving separate least-squares problems of the
form

min
Âi,B̂i

‖ ˙̂
Ci − εcV>ci

F− ÂiĈi − B̂iU‖F , i ∈ {1, 2}.

Important for physical interpretability of the model

Numerical implications, stability [Liao et al., 2007; Reis & Stykel, 2007, 2008;
Benner & Feng, 2015; Kramer, 2016]
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Learned ROM and projection-based ROM

Both the learned ROM and intrusive ROM retain coupling structure

Singular values decay rather slowly due to transport nature of Batch Chromatography

ROMs of order r = 22 for each variable

DEIM approximation used for nonlinear term fi(c1,q1, c2,q2)
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Learned ROM accuracy

For r < 30, intrusive POD ROM and
learned ROMs perform similarly

For r > 30 the learned ROM does not
converge monotonely ⇒ Condition
number of Operator Inference problem, or
closure issue (Re-projection?).
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Conclusions: Learned ROMs with non-polynomial structure

Accurate non-intrusive ROMs possible with Operator Inference learning framework

Convergence results shows that under mild assumptions on the time stepping and step
size, the non-intrusively learned reduced models converge to the same reduced models as
obtained with intrusive model reduction methods.

The more we know about the model, the more we can incorporate into the
learning framework: Model structure, nonlinear terms, etc.

Operator Inference for non-intrusive model reduction of systems with non-polynomial
nonlinear terms, Benner/Goyal/K./Peherstorfer/Willcox, 2020
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Part 2:

Operator Inference to learn ROMs for control applications

Feedback control for systems with uncertain parameters using online-adaptive reduced models.
K./Peherstorfer/Willcox, SIAM J. on Applied Dynamical Systems 16(3), pp. 1563-1586, 2017.
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Part 2: Problem setting & Goal

Goal: Control a plant that has the form:

ṡ(t) = A(q(t))s(t) + Bu(t), s(0) = s0 ∈ Rn

with time-dependent parameters that assume a residence time:

q(t) = qTi for t ∈ Ti = [ti−1, ti].

Problem setting and challenges:

Switching times ti not known a priori; have to be detected online

Dynamical system response changes with q(t) (stability, equilibria)

Large-scale setting, (n large)

Cannot evaluate A(q(t)) online (b/c recourse to full model solver)

Opportunities:

State-space data from plant available

Can use operator inference to learn ROM state-space model
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Formulating the control problem

Linear Quadratic Regulator Problem

min
u

J(s,u;q) =

∫ ∞
0

||Cs(t;q)||22 + ||Ru(t; q)||22 dt

s.t. ṡ(t) = A(q(t))s(t) + Bu(t), s(0) = s0 ∈ Rn

u(t; q): control; B,C known input and sensing matrices.

Control problem for plant with uncertainties

Let A(q(t)) be available offline, but not online. Let B,C be available online. For all
Ti = [ti−1, ti], i = 1, 2, . . . , solve the control problem:

min
sTi ,uTi

J(sTi ,uTi)

s.t. ṡTi(t) = A(qTi)sTi(t) + BuTi(t),

where the subscripts indicate the state and control in Ti = [ti−1, ti].
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A solution approach to the problem

How can we detect switching ti? How to deal with not-available A(qTi)

Approach:

Reduce-then-design approach: Design a controller based-on low-dimensional ROM

Use data to learn and update ROM matrix online ⇒ robustness to parametric changes

Algorithmic details:

Offline: Library of high-fidelity solutions (subspaces, feedback gains)

Online:

1. Detect parameter-dependent subspace V = V(q) ⇒ Deals with unknown switching times ti
2. Learn system matrix Â(q(t)) = V>A(q(t))V in real-time through data-driven ROMs;

recompute optimal feedback from surrogate model
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Related work

Reduced-order modeling for control design:
[Burns and King, 1998, Burns et al., 1999,

Kunisch and Volkwein, 1999, Atwell et al., 2001,

Banks et al., 2000, Banks et al., 2002, Benner, 2004,

Lee and Tran, 2005, Borggaard and Stoyanov, 2008,

Sachs and Volkwein, 2010, Alla and Falcone, 2013,

Nicaise et al., 2014, Tissot et al., 2015, Pyta et al., 2015] .....

Online-Interpolated ROMs for
parameter-dependent systems
[Poussot-Vassal and Sipp, 2015]:

ROMs generated offline for linearized
equations; online interpolation (parameter
known)

Gain Scheduling for LPV systems
[Becker and Packard, 1994, Theis et al., 2016]

Linearization of NL systems around operating
conditions/equlibria

Scheduling variable determines which
controller to use

Controls with switching structure
[Clason et al., 2016]

Offline (high fidelity)-online (compressed
sensing detection) strategy [Mathelin et al., 2012]

Controllers parametrized by initial condition

Statistical learning strategy [Guéniat et al., 2016]

Markov process model + Reinforcement
learning for control law

Learning LQR controller from random control
input excitations [Dean et al., 2019, Cohen et al., 2019]

Complete theory for error in learning
unknown linear model
(||A−Aest|| < ...., ||B−Best|| < ... ) and
robust controller

Finite-data results, but assumes randomized
controller trials can be made
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Reduced-order models to represent dynamics

We approximate the dynamics as

s(t;q) ≈ V(q)ŝ(t;q), V(q) ∈ Rn×r, r � n,

where V(q) contains basis vectors for a low-dimensional, accurate representation of the
dynamics. Enforcing orthogonality of the residual yields a ROM of similar structure

˙̂s(t;q) = Â(q(t))ŝ(t;q) + B̂u(t),

where
Â(q) = V(q)>A(q)V(q), B̂(q) = V(q)>B.

We compute a library of subspaces V(q) for a suitably chosen selection {q1,q2, . . . ,qM}.
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Low-rank structure in LQR

If (A(q),B) is stabilizable, then control assumes linear state feedback:

u(t; q) = −K(q)s(t;q) = −[R−1B>Π(q)]s(t;q), (2)

0 = A>(q)Π(q) + Π(q)A(q)−Π(q)BB>Π(q) + C>C (3)

where K(q) is the gain matrix.

Π(q) often of low numerical rank:

Π(q) = W(q)W(q)>, W(q) ∈ Rn×r

⇒ Work with low-dimensional operators through V ∈ Rn×r:

Â(q) = V>A(q)V, B̂ = V>B, Ĉ = CV

Solve (3) in low dimensions (reduce-then-design):

0 = Â>(q)Π̂(q) + Π̂(q)Â(q)− Π̂(q)B̂B̂>Π̂(q) + Ĉ>Ĉ

[Jbilou, 2003, Jbilou, 2006, Heyouni and Jbilou, 2009, Benner et al., 2008a, Benner et al., 2008b, Simoncini et al., 2013,
Lin and Simoncini, 2014, Wang et al., 2014, Li et al., 2013, Kramer and Singler, 2016]. . .
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Offline: Pre-computing library of feedback gains

Feedback gains K(qi), learning bases VL(qi), detection bases VD(qi), for i = 1, . . . ,M :

L :=


VL(q1)
VD(q1)
K(q1)

 , . . . ,

VL(qM )
VD(qM )
K(qM )


 .
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Online: Solving the classification problem

S: selection operator that selects p′ entries from the states s(t;q(t)) with p′ ∈ {1, . . . , n}
and p′ � n

Detection subspaces VD(q̄i), i = 1, . . . ,M

Define classifier h : Rp′ → {1, . . . ,M} via

h(Ss(t; q̄k)) = k

Solve classification problem by projection Pi : Rp′ 7→ Rp′ :

Pi = SVD(q̄i)
[
(SVD(q̄i))

>(SVD(q̄i))
]−1

(SVD(q̄i))
>

Selected subspace:
k = arg max

i=1,...,M
||Pi(Ss(t;q))||2

Next step: Act on information and initiate model learning
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Online: ROM learning from recorded data

Goal: Learn ROM system matrix Â = Â(q̃) ∈ Rr×r from data s1(q̃), . . . , s`(q̃) and selected
subspace V = VL(q̄k) ∈ L.

Compute B̂ = V>B and B̂d = V>Bd

Assemble past control inputs uk = u(tk;q(tk)):

U = [u1,u2, . . . ,us]
> ∈ Rs×m,

Reduced states ŝi := V>s(ti) stored in

Ŝ = [ŝ1, ŝ2, . . . , ŝ`]
> ∈ Rs×r

Derivative approximation ⇒ ˙̂s1, . . . , ˙̂s`
Operator inference problem for Â = Â(q̃):

min
Â∈Rr×r

s∑
i=1

∥∥∥ ˙̂si − Âŝi − B̂ui

∥∥∥2

2

Convergence to projected matrices established [Peherstorfer and Willcox, 2016]
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Online: Detect subspace and learn model

Online classification gives
“best-fit” low-dimensional
subspace VL(qk) for learning

Learn/adapt new ROM system

matrix Â(q) by incorporating
real-time data
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Numerical example: Convection-diffusion PDE

Let x = [x1, x2]> ∈ Ω = [0, 1]2 and

∂θ

∂t
(t,x) = q(t)

(
∂2

∂x2
1

+
∂2

∂x2
2

)
θ(t,x)− x2

∂θ

∂x2
(t,x) + b(x)u(t) + bdg(t)

Boundary conditions:

θ(t, x1, 0) = 0, θ(t, 1, x2) = 0, θ(t, x1, 1) = 0,
∂θ

∂x1
(t, 0, x2) = 0

Control enters through b(x) = 5 if x1 ≥ 1/2 and 0 otherwise

Uncertainty ⇒ diffusion coefficient q(t) ∈ R
Spatially discretized system (piecewise linear FE):

ṡ(t; q) = A(q(t))s(t; q) + Bũ(t) + Bdg(t), s(0) = s0 ∈ Rn

y(t) = Cs(t) ∈ R

C = 5
n [1, . . . , 1].

n = 3540 for FEM discretization = “truth model”
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Eigenvalues of A(Pe) for different Péclet numbers

Parameter q̄i = Péclet number = convective transport rate
diffusive transport rate

High Péclet numbers indicate strongly convective flows

Four Péclet numbers to generate library L : Pe ∈ {2, 10, 50, 1000}

-4 -3 -2 -1

Re
×10

-3

-1

-0.5

0

0.5

1

Im

Pe = 2

Pe = 10

Pe = 50

Pe = 1000

Figure: The two eigenvalues with largest real part of the system matrix A(q̄i).

38 / 46 Boris Krämer (University of California San Diego) Operator inference for non-polynomial systems and control



Open loop output and gains for different Péclet numbers
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Figure: Output y(t) of the open loop convection diffusion system, excited with nonzero initial
condition s0(x, y) = 15 sin(2πx) sin(πy); disturbance g(t) ∝ N (0, 0.5) applied through a disturbance
term at 0 ≤ x1 ≤ 0.05.
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Output with learned and intrusively-projected controller

Simulate online until T = 2.5s
Learning basis r = 10 (eigenbasis)
Detection basis (POD) r = 30 from S = 1, 000 snapshots
Misclassification after t > 1.5s due to similar equilibrium solutions
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(e) Selected library elements as indicated by
the detection functionh(·).
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(f) Controlled output y(t).
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Numerical example II: Permeablity

Laplace equation on Ω = [0, 1]2 as model of flow through porous medium

∂

∂t
θ(t,x) = ν(t,x) ·

(
∂2

∂x2
1

+
∂2

∂x2
2

)
θ(t,x) + b(x)u(t) + b1d(x)g1(t) + b2d(x)g2(t)

Uncertain permeability: q(t,x) = ν(t,x)

Spatial discretization: s ∈ Rn:

ṡ(t) = A(q(t))s(t) + Bu(t) + Bdg(t)

y(t) = Cs(t)

White noise disturbance g(·) enters through Bd at [x1, x2] = [0.3, 0.3] and
[x1, x2] = [0.3, 0.7]

Sensor location at [x1, x2] = [0.5, 0.6]

Control location at [x1, x2] = [0.6, 0.7]

Compute library L using three permeability fields q1(x),q2(x),q3(x)
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Output of controlled system

Learning basis VL(qi): Eigenbasis of order 20 for A(qi), i = 1, 2, 3
Detection basis VD(qi): POD basis of order 20 from closed-loop system excited with
disturbances g(t) = [g1(t), g2(t)]>. The system was simulated for 500s, and ` = 10, 000
snapshots were used to compute the POD basis
Stable regime 1, unstable regime 2
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(g) Permeabilities selected by detection func-
tion h(·).
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(h) Output y(t) of controlled systems
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Control performance

Case 1: Controller designed from projection-based ROM with perfect knowledge of q(t)

Case 2: Controller designed from learned ROM (Operator Inference model)
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Figure: Control cost function J(s, u) for both controllers on the full-order model.

43 / 46 Boris Krämer (University of California San Diego) Operator inference for non-polynomial systems and control



Feedback gains: Intrusive ROM vs learned ROM
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(a) Feedback gains at t = 122s.
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(b) Feedback gains at t = 574s

Figure: Feedback gains computed from: (left) intrusive ROM; assume permeability known; (right)
learned model without any knowledge of the parameters.
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Review and conclusions

Review:

Situation: A(q(t)) is not available online, neither are switching times ti

Learning-based control framework for high-dimensional LPV system:

1. Learning unknown ROM system matrix from data (Operator Inference)
2. Detected switching time with localized subspace approach

Conclusions:

Learning-based low-dimensional controller performs well and feedback gains are accurate

Robustness to parametric changes can be addressed through online learning

More robust controller designs could be obtained through (H∞)

Feedback control for systems with uncertain parameters using online-adaptive reduced models.

K./Peherstorfer/Willcox, SIAM J. on Applied Dynamical Systems 16(3), pp. 1563-1586, 2017.

45 / 46 Boris Krämer (University of California San Diego) Operator inference for non-polynomial systems and control



Geisel Library

Jacobs School of Engineering

Scripps Institute of Oceanography

SD Supercomputer 
Center

THANK YOU
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